Rhenium-catalyzed 1,3-isomerization of allylic alcohols: scope and chirality transfer.

نویسندگان

  • Christie Morrill
  • Gregory L Beutner
  • Robert H Grubbs
چکیده

The scope of the triphenylsilyl perrhennate (O3ReOSiPh3, 1) catalyzed 1,3-isomerization of allylic alcohols has been thoroughly explored. It was found to be effective for a wide variety of secondary and tertiary allylic alcohol substrates bearing aryl, alkyl, and cyano substituents. Two general reaction types were found which gave high levels of product selectivity: those driven by formation of an extended conjugated system and those driven by selective silylation of a particular isomer. The efficiency of chirality transfer with various substrates was investigated, and conditions were found in which secondary and tertiary allylic alcohols could be formed with high levels of enantioselectivity. Consideration of selectivity trends with respect to the nature of the substituents around the allylic system revealed that this is a reliable and predictable method for allylic alcohol synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regio- and stereocontrol in rhenium-catalyzed transposition of allylic alcohols.

A hydroxyl group-directed, highly regio- and stereoselective transposition of allylic alcohols based on rhenium catalysis has been developed. The method is suitable for a direct isomerization of acetals into the thermodynamically preferred isomer as long as one of the hydroxyl groups is allylic. This method will expand the scope of rhenium-catalyzed alcohol transpositions for complex molecule s...

متن کامل

Highly selective 1,3-isomerization of allylic alcohols via rhenium oxo catalysis.

Two reaction strategies are developed to promote the highly selective 1,3-isomerization of a variety of allylic alcohols using O3ReOSiPh3 as a catalyst. The first strategy utilizes substrates whose 1,3-regioisomer contains a conjugated alkene, which relies on thermodynamics to obtain high selectivity. The second strategy employs N,O-bis(trimethylsilyl)acetamide as an additive to selectively and...

متن کامل

Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mech...

متن کامل

Iridium-Catalyzed 1,3-Hydrogen Shift/Chlorination of Allylic Alcohols**

Chlorinated compounds are among the most common and versatile building blocks in organic synthesis. Among these, achlorocarbonyl derivatives are of synthetic value owing to the variety of functional groups that can be introduced both at the chlorinated a-carbon atom and at the carbonyl functionality. For instance, they readily undergo substitution/addition reactions and cross-coupling reactions...

متن کامل

The synthesis of chiral β-aryl-α,β-unsaturated amino alcohols via a Pd-catalyzed asymmetric allylic amination.

Chiral β-aryl-α,β-unsaturated amino alcohols were synthesized via a Pd-catalyzed asymmetric allylic amination of 4-aryl-1,3-dioxolan-2-one using planar chiral 1,2-disubstituted ferrocene-based phosphinooxazolines as ligands. Under the optimized reaction conditions, a series of substrates were examined and the products were obtained in good to excellent yields (up to 92%) and enantioselectivitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of organic chemistry

دوره 71 20  شماره 

صفحات  -

تاریخ انتشار 2006